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AIIS”J’RAC’J’
WC dcsc.ribc  the application of de.c.ision  tree based classifimtion  techniques to the
development of an automated tool for the reduction of a hmgc scientific data set. The
2nd Palomar Obscrvatory Sky SuIvcy (1’0SS-11) provides comprchcnsivc covcragc
of the northern celestial hcmisphcrc in the form of digiti~,ed  photographic plates
whose cIuality  will probnbly  not bc surpassed in the next tcn to twenty years. l’hc
images arc expcctcd  to contain on the orclcr of 107 g:llaxics and 108 stars.
Astronomers wish to clclcrminc which of these sky objects belong to various
classes of g:daxics  and stars. ‘1’hc six of this dat:l set prccludcs manual  analysis.
Our approach is to develop a softw:lrc  systcm which inlcgrntcs the functions of
indcpcndc.nt]y  dcvclopcd  tcchniqms  for ima:c processing, data classification, and
(Iatabasc  lWtll[l~CIllCn(. l’Liblic  don]ain  inl:lgc proccssin~ routines arc used to
identify sky objects and to extract a set of basic features ~ or c:ich object. ‘1’hcsc
fmturcs  arc used to select a uscfu] and robust set of attrihutcs for classifying sky
chjccts, The GII>3*  anti 0-13rI’rcc  decision [rcc lcwning  algorithms, in conjunction
w]th the RLJI .IIR systcm for statistically pruning and merging multiple trees, arc
used to classify the clctcctcd objects. ‘1’hc rcsu]ts indic:ltc that our approach is well-
suitcd to the problcm, Llsing higher resolution image sources covering minute
portions of the survey, the learning algorithms producccl  classii;crs that cm classify
objects in the survey that arc too faint for visual c]assific:ltion  with m accur:icy  level
of about 94%. Not only CIOCS this incrcme. the number of ohjcc[s in the find  catalog
by tbrcc-folcl  (75% of objects in nn image arc faint), it allows us to catalog
classified sky objects that arc at least onc magnitude fainter than objects classified
in sky surveys to dntc. SKIC.A’I’ represents a systc.m in which n~achint  learning
played a powcrfu] :Incl enabling ro]c, and solved a difficu]l,  scicntifical]y  significant
problcm.  The primary benefits of the approach :Irc incrc:~scd data reduction
throughput, repeatability, and consistmcy  of clmsification.

K_eJ\y~rgls: h4achinc  1.canling Application (l:u:c-sc:IIc),  drcision  tree lc[]rl~ing,
Scientific Illta An:dysis, lnlwy  l)[ltitbascs.



1. lNTItoI)[JCT1ON
in (his paper wc present an npplimtion  of mnchinc  lemming tcchniqms  to the autolnation  of the

task of cataloging sky objects in digitized sky inul~cs. “1’hc Sky lmagc Classification and Archiving
‘loo] (S KIC;AT)  is being cicvclopcd  for use on the images rcsu]ting  from the 2nd Palomar
Observatory Sky Survey (POSS-11) conducted by the ~alifornia  Institute of Technology (Grltccll).
“1’he photographic plates collcctcd  from the survey arc being digitimd  at the Space “1’clescopc  Science
lnstitLltc  (S”l’SC1). This process will result in about  3,000 digi[ni images  of roughly  23,000~  pixclsl
each. ‘1’hc survey consists of over 3 tcrabytcs  of data containing on the order of 107 galaxies, 108

stars, and 105 quasars.
‘1’hc first step in analyzing the results of a sky survey is to identify, measure, and catalog the

dctcctcd  objects in the image into their rcspcctivc classes. Oncc the objects have been classificcl,
further scientific analysis can procccd. For ex:implc,  the resulting catalog may bc used to test
models of the formation of large-smlc structure in the Llniversc,  probe g:il~w.tic strLrcturc  from star
counts, perform autormttic ictcntifications  of raclio or infrarc(i  soLlrccs, and so forth. 3’llc  task of Ic-
dLlcing  the images to c:ita]og entries  is [l l:iborioos  til~~c-corlsl][~lir~g  process. A manual  approach to
constructing the catalog implies that many scientists need to cxpcnct  lmgc mmunts  of time on a vi-
sually intensive tnsk that may involve  significm[ subjective judgment. ‘1’hc goal of our project is to
ao[omatc the process, thus allc.viating  the burclcn of cataloging objects from the scientist and
providing a more objective methodolc)gy  for reducing the data sets. Another goal of this work is to
classify objects whose intensity (isophot:d  n~aSnitL]dc)  is too faint for recognition by inspection,
hence rcclulring an automated classification proccdLlrc.  I;aint objects constitLltc [hc majority of
objects on any given  plate. We tnrgct the classification of objects that arc at least onc magnitucic
fainter thm objects classificci in prcvioLls  surveys using conqmrablc  photographic mrtcrial.

‘1’hc goals of this p~lpcr arc:
] . to in[roduce the machine ]carning techniques wc Llsc(i and compmc their pcrlormancc  to other’

alternatives such as neural  networks,
2. to give a general, high-lcvc]  description 01 the current application donmin.
~. to rcpol”t  on the successful  results which exceeded  our initiul  goa]s for this problenl.

Wc thcrcforc do not provide. the details of either tllc lemming ~llgori[hms  or the tcchnicd  aspects of the
clomain. Wc aim to point out an instmcc  where the lemming algorithms provcci to a be useful and
powcrfLll tool in the automation of scientific data analysis.

2. MACII INK I. ICARNING  l\ AC KG ROtJND
‘I”hc growing nLlmbcr  of large di:ignostic  and scientific databases provides an important niche

for machine learning tccllniqLlcs.  A dnt:ibmc thnt stores instances of diagnostic tasks is typically
accessed by keyword or condition look L!p. As the si~.c of the datnbmc grows, sLIch an approach
bccomcs incffcctivc since a clLIcry Inay easily rctLlrn  hundrccls of matches nmkitlg silnple  case-based
LlstIgc impractical. l;or large scientific databases the problcm is to search for and clctcct  patterns of
interest, or to perform prc-processing necessary for sLlbscquent  [Ina]ysis, Sizes are now becoming
too ]m’gc for nlanLla]  processing. ] ,Carning tCChlliC]LICS  Cnll Serve m CffCCtiVC too]s for ~idin: in the
analysis, rcd Llction,  and visualization of large scicntit-ic  clatabnscs.

2 . 1 .  lNI}LJC’IUON  oI~ l) ItCISION  TRILIt S
A particularly cfficicnt method for cxtrac[ing rLllcs  from d:~ta  is to gcncr:~te  a decision hcc

[13rci84, Quin86]. A decision tree consists of nodes that are tests on the attributes. ‘l’he oLltgoing
branches of a node correspond to a]] the possible oLltconlcs of the test at the node.  “l-he cxatnplcs  at a
node in the tree are thus parliliollcd  n]ong the br~inches  and wch  chi]d node gets its corrcspon(iing
subsrt of cxanlp]cs. A popLllar  iilgorith]]]  for :cncr~lting  derision trees is QLlirll:in’s  11)3 [@lin86]
with cxtenclcd versions c:illcd  ~4 [Quin90].



. .

11>3 st:lrts by placjng all the training examples at the mot nocic of (11c tree. An attribute is
sc]cctcd (o partition the clata. l~or each va]ue  of the attribute., a branch is crcatccl ant] the
corresponding sLIbsct of examples that h~tve the at(ribtltc  valLlc  spccificd  by the branch arc moved to
the newly crcatcci  child noclc.  “1’hc algorithm is applied recursively to each child node until either all
examples at a node arc of one class, or all the examples at that node have the same values  for al] the
at(libutcs.  F{vcry  lmf in the decision tree represents a classification ru]c.

Note that the critical ciccisjon in such a top-dotvn  decision tree generation algorithm is the
choice of attribute at a node. l-he attribute selection in 1113 an(i C4 js based  on minimi?,ing  an
information entropy measure applied to the examples at a node. The measure favors a((ributes  th:tt
result in partitioning the data into subsets that have low class entropy. A subset of data has low
class entropy when the majority of examples jn it belong to a single class. “1’hc algorithm basically
chooses the at(ribute  that proviclcs the locally maxinl  Llm ctcgrec  of discrimination between classes.
]~or a dct~li]cd  discLlssion  of the information entropy selection criterion Scc [QLlin86,  l;:1yy9  11.

2.2. TIIIt G11)3*  AND O-IITREK AI. GO RI TIIMS
‘1’hc criterion for choosing the :ittribLltc  clearly dctcrmincs whether a “good” or “bad” tree is

gcncrate(i  by the ttigorithn~2.  Since making the op(imal attribute choice is coI~l])Ll(:~tiorl;tlly infeasible,
]IJ~ Uti]izcs a heuristic criterion which favors the attribLnc that rcsLllts in the partition having the ]cast
information entropy with respect to the classes. ‘l’his  is generally a good criterion an[i often results
in relative] y good choices. 1 lowcvcr, there arc wmkncsscs  inherent in the 11>3 algorithm that are
due mainly to the fact that jt creates a branch  for each value of ti~c attribute chosen for brmching.
“1’hc ovcrbranching  problcm  in 11)3 leads to several probclms,  since jn gcJ)cral  it m:Iy l-x the case that
only a subset of values  of m attribute arc of rclcvmcc  to the classification task wi~]lc the rest of the
values  may not have any special predictive val Llr for the c]nsscs. ‘1’hcse extra branches arc harmful
in three ways [bayy91 ,l;ayy93a]:

1. “1’hcy  result in rules that arc ~>vc]spccitlli~,c(l.  ‘1’hc leaf nodes th[lt are [he descendants of the nodes
crcate(i  by the extraneous brmches  will bc eon(iitionc(i on pmlicLllar  irrelevant a((ribute valLms.

2. They unnecessarily partitic)n  the clat:i,  thLIs rcdLlcing the number of examples at mch child node.
‘1’hc.  Subscqllcnt  attribLltc.  choices ma(ic at such chil(i no(ies w]]] be bascci  on an Lltljustifiably
rc(iuccd sLlbsct of (iata.  ‘1’hc quality  of sLlch choices is thLls Llnnccessari]y  rcd Llccd.

3. They jncrcosc the. ]ikclii~omi  of occurrence of the missin~  brmchcs  problcln. ‘1’his problem
occurs because not every possib]c  combination of ilttribLltc  va]LIcs is present in the cxamp]cs  (see
[I:ayy91, F;:~yy93a] for more details).

“1’hc G11>3* algoritim was cicsignc(i  mainly to overcome this problem. It Lltjliz.cs  a vector
Ciistancc  measure applied to the class vectors of an exanlp]e  partition, in colljllnction with the
entropy measure, to create for each ;lltribLltc  a ph(intom atrributf) that has 011]~ a subset of the
original attribute’s val LM. We gcncrali~,mi  the 11)3 :Ilgorithm so that it (ioes not ncccssmi]y branch
on each va]uc  of the chosen attribute, GlD3*: can br:lnch on arbitrary in(iividLlal  vnlues  of an
attribute and “lL]nqJ” the rest of the valLlcs in a single defcll{lt br(lncll.  lJnlikc (1IC other branches of
the tree which represent a single val Llc,  the dcfau]t  branch rcprcscnts a SLlbSCt Of V:dll CS Of an
attribLltc.  ~Jnneccss:~ry subdivision of the data may thLls  bc rcdLlccd.  See []; :iyy9 ] ,};ayy93a]  for
more (ictails and for empirical cvi(icnce of improvement.

The O-13trcc algorithm [Fayy92b]  was clcsjgnc(i  to ovcrcomc  problems with the inform: ~tion
entropy selection measure itself. O-I\trcc crcatcs  strictly binary trees :ind utiliz,cs  a measure fronl a
family of measures (~-SIIP)  that (ictccts  class separation rather than class impurity. Information
c.n(ropy  is a member of the class of inq3Llrity  mc:tsurcs. O-I+trcc employs an orthogona]ity  mcmur.  e
rather than entropy for branchin~.  For dctni]s on problem with entropy nlcusLlres  and cmpjrical
evaluation of O-Btrec, the reader 1s rcfcrrc[i to [I;ayy9 1,1+’ayy92b],

hth O-Btrcc  and GII>3’K differ from 11)3 and ~4 along one ddit  ional  mpcct: the discrctimtion
algorithm Llsc. d III each node to discrc.  t iz,c L’ont inuous-valt)ed  attrib Lltcs. Wi)creas ] 1]3 :md ~4 utilim a
binary intcrva]  discretiz,ation  algorithm, wc utilize  a gcncroii~ed  version of thilt  olgorithm  which



cicrives multiple in(crva]s  rather than S(ric(ly  two. l;m details an(i cmiliric:d tests showing that this
algorithm (icms inchmi  pro(iLm.  better tre.cs scc [l;ayy9 1,l;ayy93b].  Wc have foun[i that this ability
dots improve pcrfcmnance  consi(icrab]y in scvcra] ciomains.

2 . 3 .  ‘1’I]v: RIJI.IIR  S}’ S1’EM
‘1’here arc limitations to (iecision tree generation algorithms that (icrivc from the inherent fact

that the classification rL]lcs they produce originate from a sing]c tree. This fact wm recognized by
practitioners early on [Brei94,Quin87], Tree pruning is use(i  to ovcrcomc the fact that in any good
tree there arc always leaves  thnt arc ovcrspccialimi  or prcciict  the wrong class. l’hc very reason
which makes decision tree generation cfficicnt: the fact that data is quickly partitioned into ever
smaller subsets, is also the reason why ovcrspcciaiimtion  or incorrect classification occLws. It is
our philosophy that once we have gooci, cfficicnt, ciccision tree gcncr:ltors,  they could be used to
generate multiple trees nnci only the best rules in each tree arc kept. We initially developed the RIST
systcm  [~hcn90] which later cvolvcci  into the RIJI.1 ~1< systcm to implcmnt  sLIch :1 schcmc.  I;igL]]c
1 gives  an overview of the RLJLER  systcm.

RUIXR  starts with a data set, and randomly  divicics it into a training subset  and test subset. A
dm.ision  tre.c is gcncratcd  from the training set and its rLdcs  arc tested on the corrcsponciing  test set.
lJsing IJishcr’s exact test [Finn63]  (the exact hypcrgconm(ric (distribution) RIJI ,ER ev:duatcs  each
condition in a given rule’s preconciitions  for relevance to the class prcdictcci by the rule. It computes
the probability that the conciition  is corrc]atc(i with the ckss by chance ~. If this probability is
higher than a mail tilresholci  (say 0.01), the condition is ciccmcci irrc]cvant an(i is prLlned.  In
a(i[iition, RLJI.lIR  also nmasLwcs the merit of the entire rLllc by applying the test to the entire
prmonclition as a unit. l’his process serves as :1 filter which passes c)n]y robust, general, and
corrccl  ru]cs.

By gathering a ]argc nLlnlbcr of rules through iterating on ran(iomly subsamplcci  training sets,
RLJI .I+X huii(is a large rule base of robust rules that collectively cover tk e.ntirc  original CM set of

A rchitcc  hturw of R [J1.lil< sy stc m.
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Figure  1. Architecture of the R[ll,ltlt Rule Induction System



examples, Agrecdy covcrirlg:llg(~  litlll~~  istt~c~l  cllll>loyc(l  to select a minimal subset ofru]es
tlla[ covers the Cxanlpks. ‘1’he set is minimal in the sense that no rule coL]ld be removccl  without
losing complete coverage of the original training SC(.

IIsing this mcthocl, wc can typically produce a robust  set of rL1lcs that has fewer rules than any
of the original decision trees thal were tlscd to create it. I;urthcrmore, any learning algorithm that
pmdLIccs  rules can be. LISCCI as the rLllc generating component. We usc decision tree algorithms
bccamc  they constitute a fast and efficient method  for generating a set of rules from a training set.
This allows us to iterate many times without requiring extensive amounts of time and conq>Lltation.

Now that wc have COVCrCd  al] the rCICVallt components of the learning system, wc shall turn
oLlr attention to the task of automating sky object  classification.

3. C14ASS11WING  SKY 0BJ14; C3S
I)UC to the large amounts of data being collected, a nNmLKd approach to classifying sky objccl.s

in the images is infeasible (it woLlld rcq Llirc on the orclcr of tens of man years). ]ixisting
computational methods for processing the images  will preclude the identification of the majority of
objects in each image since.  they arc at levels too faint for traditional recognition algorithms or even
manual inspection/analysis approaches. Our main objective is to pmviclc an effective, ol>jcctivc,
and examinable basis for classifying sky objects.

‘]’hc photographic plates collected from the survey arc being di.gitiz,cd  at the Space “1’clcscope
Science ]nstitutc  (S’I’SCI). This process will rcsLllt  in about 3,000 digital images of roughly
23,0002 pixels each. 1.OW-ICVC1  image processing and object separation is performed by the
HXAS image processing software developed at JIcll 1,abs [Jarv8 1,Vald82]. ]n acldition  to
cicfining the objects in each image, I; OfJAS also produces basic attributes  describing each object. A
digitized plate is subdivided into a set of parlially  ovcrlapl)ing  franms.  l;ach frame represents a small
Jxlrt of the plate that is small cnoLlgh  to be manipulated and processed conveniently, };igLlrc  2
dcpic[s  the ovc.rail architcctLlrc of the SKICA1’  System. ‘1’hc discussion below will explain the loop
in the bottom left-hand comer in which machine learning is employed in the attribute n~casLu-cnlcnt
process. The image proccssinS  stc.ps that a digiti~cd plate goc.s throLlgh  :Irc:

1. Select a frame from the digitized plate.
2. 1 ]ctcct ion: detect contigLmls  pixels in the image that arc to bc yoLIpcd as one object (standald

image processing).
3. l’crforln more accurate local sky dctcrjnination  for each detected object.
4. l;valLlatc parameters for each object  independently: we initially rncusurcd  18 b~{sc-level

(itt ribulm.
S. Split objects that arc “blcndccl” together and rc-cvalLlatc  attributes.
6. Auv’oPS1~:  select a subset of the objects in the frame an(i designate them as being “surc-

thing” stars, form PSF template (see below).
7. Measure re.soll(tion  SCLJIC  and rc.wllflion fraction  attributes for each object: “1’hcsc arc obtained

by fitting the object to the l)S1; template of sure-thing stars formed in step 6,
8. Measure additional normaliz,cd  attributes (bringirlg total attributes to 40)
9. (~lassify objects in image.

All steps arc aLltonmcd  except for slcps 6 and 9. Step 6 nce(is further elaboration. “l-he goal of
this step is to define the two resolution attributes mentioned in step 7. 7’}lcsc attributes arc
parameters of a template defined on a point spread function (PSI;). ‘1’hc template is colnputed  over a
sLlbsct  of objects identified as sure-thing stars, ‘1’hc sllrc-thing  stars arc selected by the astronomer.
“J’hcy represent the “archctypa]” stars in that image, once  the stars arc selected, the tcnlJ>latc  fitting
and resolution parameter n]casurcmcnts  arc eomputcd  tlLltc>lll:\tic;llly.  Thus in order to aLltonultc  stc~)s
1-8 wc ncccl  to automate the star sclcc[ion step (6). We refer to this problem as the st(~r .selectimz
.Vld)pr[)ld(’m.
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IJigure 2. Architecture of the SKI CAT Systcm

l’hirty base-level attributes are nlcasL]rcct in step zI. ‘1’hcsc arc generic qLlantitics  uscct typically
used in astronomical analyses [Valct82].  A subset of the.sc is listed below.

● isophotal  magnituctc
● isophota]  arm
● core magnitucic
● core ]unlinosity
● sky brightness
● sky sigma (vm-iancc)
● image moments (8): irl, ir2, ir4, r], r2, ixx, iyy, anti ixy.
●  ccccmtricity  (cllipticity)
● orientation
● semi-major axis
● semi-minor axis.

once all attribLltes,  inclllcling  the resolution attributes, for each object arc nmsLlrcd, step 8 involves
performing the final classification for the purposes of the catalog. Wc are currently classifying
objects into four major catcgorics:  star (s), star with fuzz (sf), galaxy (g), and artifact (long). We
may later re.fim the classification into more classes, however, classification into onc of the four
classes rcprcscnts our initial goal.

3.1. C,], ASS1lIIYING ]~AINT  ol\JItC’I’S AN]) l’IIIi L]SI1 OF CC])  IMAGlt S
in addition  to the scanncct  photographic plate, wc have access to 0211 images that span several

small regions in some of the frames. CCHj images arc obtaincci  from a separate telcscopc.  “l-he main
advantage of a ~(;l> inlagc is higher resolution and signs]-to-noise ratio at fainter levels. IIcncc,
many of the objects that arc too faint to bc classilicd  by inspection of a photographic plate, arc easily
classifiable in a ~C3> image. in adciition  to using these images for photometric calibration of the
photographic p]atcs, we make LISC  of ~~1> ima~,es  in two very important ways for the machine
learning aspect:

6



1. CX21) images  enable  LIS to obtain class labels for fain[ objects in ihc photographic plates.
2. 03J images provide us with the mans to reliably cvalLIatc the accLlracy  of the classifiers

obtainml from the decision lrcc learning algorithms,
Recall that the image processing package IiO~AS provides the mcasurcmcnts  for the base-level

attributes (and the resolution attributes after star selection) for each object in the inliigc. in order to
prodLIce a classifier that classifies faint objects correctly, the learning algorithm needs (raining data
consisting of faint objc.ets  labeled with the appropriate class. The class label is therefore obtained by
examining the ~.Hl frames. Once trained on properly labeled objects, the learning algorithm
produces a classifier that is capable of properly classifying objects based on the values of the al-
tributes provided by FOCAS. IIcncc, in principle. the classifier will be able to classify objects in
the. photographic image that arc simply too faint for an astronomer to classify by inspection. lJsing
the class labels, the learning algorithms are basically being used to solve the more difficult problem
of separating the classes in the rllLllti-dilllcrlsioIl;ll  space dcfinecl  by the set of attributes derived via
image processing. ‘1’his method is expected to allow us to classify objects [hat arc at Icast one
magnitude fainter than objects classified in photographic sky surveys to cta(c.

3 , 2 .  ]ws~JI,Ts  FOR TIIK  CI,ASSIIUCATION  I’IIOB I,1th4
Starting with digitizcct frames obtained from a single cligitiz,ed  plate, wc performed initial tests

to evaluate the accuracy of the classifiers produced by the machine learning algorithms 1113, GID3’*,
and O-13 Trcc. ‘1’hc data consisted of objects collcctccl  from four different pla(cs from regions for
which we had CC3~ image coverage (since this is data for which trLlc accurate classifications are
available). The learning algorithms arc trained on a data set from 3 plates ancl tested  on data froln
the remaining plate for cross vali(iation. This estimates our accLlracy  in classifying objects across
plates. Note thal the plates cover different regions of the sky and that ~C3> frames cover multiple
minute portions of each plate. The training data consisted of 1,688 objects that were c]assificcl
manually by one of the authors (NW) by examining the corresponding ~CXl frames. It is
noteworthy that for the majority of these objects, the astronomer would not be able to ctcterjnine the
c]nsscs by examining the mrrcsponcling  survc.y (digit izcci  photographic) inmgcs.  All attributes used
by the learning algorithms arc derived from the survey images and not from the higher resolution
ccl) f l a m e s .

lJsing all the attributes derived in step (8) inc]uding  the two resolution at[ributcs derived in step
(’7), the classification rcsLllts  arc shown in Table 1.

11)3 (;]I)3* O-lltree I{lJ1.NR  –

—
#l LI]CS Occurac y #l”ulcs accurtlcv #tl LliCS NTLlri  K\J #flules mcuracv —u 73 75.6% 58 90.1940 54 91.296 45 94.~~,——

‘1’able 1. Summary of results using all attributes.

‘I”hc results for RIJI ,ER above arc shown for using O-Dtrec as the ciecision  tree generation
component and were obtained by cycling through tree generation and rLllc merging 10 times. ~Jsing
1113, the results were not as good: the accLlracy  in this case was only around  85Y0. ResLllts with
using G1D3* ilS the tree generating component for ruler are similar to O-Btrcc’s.

1 ]owcvcr, when the same experiments were Con(iuctcd without using the re.$o/lIrio/l .rca/c and
rc.soll(limz fractio~z attribLltc.s  of step 6, the results were significant! y worse. “1’hc.  error rates jumped
above  20% for O-B”J’ret, above 25% for G11)3*:, and above 30% for 11)3. ‘1’hc rcspcctivc siz.cs  of
[hc trees grew significantly as well.

‘1’hc initial results may be sLlnlnlarimd m follows:
1. Algorithms G11)3* and O-11~’rcc  produced significantly better trws than 11)3.
2. [classification accLlracy  rcsLl]ts of better than 90% WCIC obtained when using two Llscr-dc-

fincd attribLltcs: rc.dution  fnicliotl and w.voll(ticul SW[C.
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3. Classification results were not as reliable and stab]c if wc exclLIdc  the IWO rcso]L]tion
at(ributcs.

Wctookt}lis:is  cvidcIlcctll:lt  t]leresC)llltioll:lt(  rit)Lltes:lre vcryilll])C)I`l:ltlt  forthcc]assification  task.
llcncc  wc tut-ncd to addressing the star selection subproblcm in orcicr to automate step 6 above.
F’urthcrmorc,  the rcsu]ts point out that the CiII~34: and 0-B”l’rcc  learning algorithms arc more
appropriate than ID3 for the final c]assifica[ion  task. As cxpcctccl,  the usc of RIJI ,IIX resulted in
improvement in performance.

3 . 3 .  A[J’IOMATING TIIE  SrI’AIt  SNMKYI’ION PRocItss
Based  on the initial rcsLllts  of the prc.vious section, it was determined that using the resolution

attributes is necessary since withoLlt them the error rates were.  signiflcant]y  worse. Wc do not have
the option of leaving star sclcc(ion as a manual step in the process, since it is a time consuming task
and will easily become the bottleneck in the system. Wc ciccidcd  to usc a mac}linc  learning approach
to solve the star selection sLlbproblcnl.

“l’he star selection sLlbproblcm is a binary classification problc.m. Given a set of objects in m
image, the goal is to classify them as sure-thing stars and non-sure-thing stars. Unlike the overall
classification problem,  the star sc]cction  problem turned out to bc a much easier classification
problem. The clata objects from all three plates clcscribccl  above were classified IIMnLEdly by one of
the authors (NW. ) into sure-slars, izo}z-sfire-.~t(lr.~,  and 14nkHow1zs.  The goal of the learning
subproblcm  is to constrLlct  classifiers for selecting out sure-stars from any collection of sky objects.
3’llc rcsu]ts of applying the learning algorithms to the data sets described above, using only the
attributes dc.rived in step 5 of course, gave the results shown in Table 2.

11)3 II G11)3* II O-l]trce

Table  2. Summary of results using all attributes.

III this case, Llsing R(JI,IW with O-13trec  did not change  the results significantly. Note that a
98.770 accLIracy  rate on this subproblcm  is more than sufficient to indicate that this subproblcm is
essentially completely solved. Consequently, this allows us to automate all the steps in the plate
processing and obtain an overall classification rate of better than 94% as shown in “l’able 1. One
note about this learning subproblcm:  the results reflect the accLlracy  in selecting sure-thing stars and
not the classification error rate. in other words, we only care aboLlt  the pcrformmcc  in terms of
sure-thing stars selected correctly. Sure-stars classifleci  as galaxies or unknowns dots not concern
us since al] wc need is a sLlbsct of good stars to fit the PSI; template to. Since this is not the main
classification task, wc only present the relevant pcrfotmancc aspects to avoi(i  confLlsim].

3 . 4 .  CIt OSS-IbI,ATIC ROBUSTNItSS  &’ COhII}ARISON  WITII NItLJRAI. NI; TS
]n orxicr  to achieve stable classification accuracy resLllts  on classifying ciata  from different

plates, wc hacl  to spend some effort in defining some normali~.ed  attribLltes  that arc less sensitive to
plate-to-plate variation. It was dctmninecl that the base-level attributes such as area, background-
sky-levels, and average intensity are ill~:~gc-dc~>crlclcIlt  as WC1l as object-dcpcndcnt. It was also
clctcrmined  that a new set of user-(icfincd attributes nec(ie(i  to bc formulated. These attributes were
to be computed automatically from the data, anti arc cicfincci  sLlch that their values would bc
normal i~,cd across images an(i p]atcs. A typical tcchniquc  wc used to derive such attributes is to
clcrivc  non-linear curves in two (iimcnsions  cicfincd by two of the base-level attributes and then
define a new attribLltc  to bc the clistancc of each object in the 2-IJ plane to that cLlrvc.  ‘1’hcsc
qLlanlitics  arc ones that astronomers USC, and many of them have physical interpretations.

It is beyond the scope of this pai~er  to give the dctailcci  (definitions of these  ncw attributes. As
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cxpcclcd, defining the ncw “normalized” attributes raised our pcrl’ormnncc  on both intro- and intc] -
plate classification to :Icccptahlc  levels varying bct~vccn  92% anti  98V0 :iccur:icy  with [in average  of
94%, Note that without these clcrivcd attributes the. cmss-plate classification accuracy drops to
60?4)-80%  lCVCIS when classifying data from different plates. OLlr encoding of the.sc attributes
rcprmcnts an implicit imparting of nmrc domain knowledge to the Icarning  algorithm.

In order to compare against other learning algorithms, and to prcclLIdc  the possibility that a
clccision  tree based approach is imposing a priori  limitations on the achievable classific;ition  levels,
wc tested scvcml neural network :Ilgorithm.  s for comparison. ‘J’hc rcsu]ts incticatc that ncura]
network algorithms achicvc  similar, and somctims  worse performance than the decision trees. ‘1’hc
ncurili  net lcaming  algorithms tested were:

] . traditional backJxopagat  ion,
2. conjugate gmdicnt  optimimtion,  and
3. varinblc  metric opti mint ion.

lJnlikc l~:ickl~r(J~>:ig:ltiol~,  the lnttcr two are triiining  algorithms work in batch mode and LISC standmd
numcricol optimization  techniques in clinging the network weights [Hcrt91 ]. ‘1’hcy  compute the
weight wliustmcnts simultaneously using ma[rix operations based on the total cmr of the network on
the cnt irc ‘training set. Their main aclvmtagc  over traditional b:ick]tr(~p:lg:~tiorl  is the signific:lnt  spccd-
LIp in trainjng  time.

‘1’hc rcsL)lts can bc sL1mnlariz.ccl  as follows: ‘1’hc performance of the neural networks was fairly
unst:lb]c ancl prodLlccd  accLmcy  lCVCIS  varying bctwccn  30% (no convcrgencc)  and 95CY0. “1’hc most
common mngc of ac.cLlracy on average was 13ctwcen  76% ancl 84%. Note that wc had to perform
nlLlltiplc  trinls, each time varying:

1. the, number of intcrn:ll  nodes in the (single) hiddcm  layer,
2. the initial weight settings for a given network architcctLwc,  m(i
3. the learning rate constant for 13:lckl>ro1Jag:llio1j,

lJpon examining the rcsLllts of the empirical cv:llL]ation, wc concl  LIdcd thal lhe neural net
approach ciid not offer any clcnr advantages over the decision tree based le.:lming algorithm.
Although neural networks, with extensive mining  and several haining restarts with different initial
wci.ghts to avoid loca] minima, could match the pcrforlmncc  of the decision tree classifier, the
decision tree appro:~ch  still holds sevcra]  major advantages. ‘1’hc most imporlant is that the tree is
c.asy for domain experts to understand. In addition, Llnlikc ncLlral  network lc:min.  g algorithms, the
decision tree learning algorithms GII13* and 0-13”1’rec do not rcqL1irc the specification of parameters
SUCh as thC Si7C Of thc 11 CUL31 llCt,  thC IILIIllbCr  Of hidden lllyCIS,  :Ill(i  rNldOIll  tlj211S with C]iffcrcnt
initial weight settings. Also, the required training time is orders of magnitude faster than the training
time recluircci  for a ncLlr:d network approach.

‘1’hc stability of the performance of the ciccision tree :Ilgorithms,  md the fact that a decision tree
(or classification rule) is a lot easier to interpret mcl L!ncicrstond than a ncurul network, wc dccidcd
to adopt t hc clcci sion tree approach in this domi n.

3.5. VICRII?ICA’I’IC)N ANI)  ]/lcl,l Allll,lTY k: STITVIAliliS
As mentioned car]icr, in addition to Llsing the ~~11 frames to derive training .datn for the

machine learning al~orithrm,  wc also usc thcm to verify mrt estim:ltc  the pcrforvnance  of our
classification tcchniquc.  This is done by testing on data sets that arc drawn inclcpcndcntly  from the
trnining  data. An additional source of internal consistency checks comes from the fact that the
plates, ancl the frames within cuch plate m partially overlapping. }Icncc,  objects insicic  the
overlapping regions will bc classified in more than onc context. IIy nmasLlring  the rate of conflicting
classifications, we can obtain fLlrthcr estimates of the statistical confidence in the accLmcy of our
clmsificr. For the pLlrposcs of the fin:l]  catalog proclLlction, a method is being desig, ncci for
resolving conflicts on objects wi(hin regions of overl:tp. Wc l]:LVC not yc( collected rcport[ib]c results
on this aspect of the problem.



.

]~igt]re 3. An i l lustrat ive  cxaml)lc: four faint sky oh,iects.

II) orctcr to dcmmstmtc  the difficul(v  and simificnncc  of (k classification rcsu]ts prcscmtcct  so
far, consider (11c example shown in l;i~,u’re 3. ‘1’;;is figure shows four image patches C;lch ccntcrcd
about  an object  that W:IS class illcd by SK IC’A’1’ as a ga]; ixy. ‘1’hCSC  illl;lgCS  \\’Cl”C Obt~linCCi  flOIll :1
plotc that w& not provided to SK1(’A”I’ in the training cycle, According to several astronomers, the
objects ShOWIl in l;igurc  3 do IIOt ilppear (0 bC g;ilaxies. As a lnattCr  Of f:lCt, :111 :lS[lX)IIOIl)Cr  ViSLl:l}]y
il)sl)ccti Ilg these im:lgcs would  bc hard pressed to decide whether they arc st:lrs or gaktxics.
}Iowcvcr, in every one of these cases, upon retrieving the corresponding higher resolution 031
images of these ol>jccts,  it was very clear thnt they were indeed gal:ixics.  Note that SKl~. AT
producecl  the prediction based on the lower resolution survey imap,cs  (shown in the figure). 71~is
example illustrates how thr SKl~A3’  clnssificr can correctly cl:lssify the majority of fain( objects
which c.vcn the astronomers cannot classify. lndccd. the results indicate that SKl~A’1’ performs this
task with w] accuracy better than 91% (for the fuintest objects in the survey).

4 .  CONOJLISIONS  ANIJ ]illTIJRIC WoltK
In this p:\pCI-, we gave 0 brief overview’ of the nl:lchinc  lcarnins  tcchniclocs  we L]scd for

autonmtin.g the sky object c:~taloging  problem. “1’hc SKl~A’1’ systcm is cxpcctcd  to speed up catalog
gcnmttion  by one to ‘t\vo orders of magnitude over traditionill  manual  :lpproachcs  to cataloging.
This should  signific:int]y  redLlcc  [hc cost of cotaloguing,  survey imngcs  by the equivalent of tens of
astronomer mm-years. in :~ddition,  SK IC~A”l’ class ilics objects that mc :~t lmst one nmgnit Llclc fainter
than ol>jccls  c:lt:llogcd  in previous surveys. l;inal]y, this proicc(  rcprcscnts  ii step towards the
dcve.lopmcnt  of ~in obicctivc, rclihlc  :lutonm(cd sky object clms;flcation  method.

‘1’hc initi:d rcsulti of our cff[)rt to uLI(omtIle  sky object ulassificalion  in order to ;Iutomatically  rc-
ducc the images produced by 1)(1 SS-ll [0 sky ca[:ilo:)s :m indeed  very cnc(~uraging.  We huVC
cxrccdcd  m]r initial dccur; ]rv Iargct CJf W%. “1’his  level of ncrur:icy  is rcqLlircd for the clat:i to bc
useful in testing or reflltin~  ti)cories on (IK form; ltion of lar:,c struc(llrc in the universe and on other

10



phenomena of interest to astronomers,
in addition to using machine learning techniques to automtc  classification, wc used them to aid

in the attribute measurement process. Since mcasurcmcnt  of the resolution attributes requires
interaction with thcuscrin  sclcctillg sllrc-tllirlg stars fortcmplatc  fitting, wcuscdthc  sanlcmachinc
learning approach to autonlatc thcstarsclcclion  process. Fly clcfirlirlg  :idditiorl:il “nomalizcd”
it:l:lgc-irlclc~>cl~dcl~t  nttributcs, wc were able to obt;}in  high accLlracy  classifiers for star selection
within and [Icross p}lotogr:lphic  p]ftles, ‘l’his in turn a]]ows LIS toautomatc  Ihc computation ofthc
J~owcrfu  lrcsolution  attributcsforcuch  objcctil~:irlillltlgc.

]Jinal  object classification will bc, tosomcextmt,  also am:ltter  ofscicntific  choice. While
objects incvc~y  catalog  will contain acl:lssific:itio~lcr~tly,  all ofthcobjcct  attribute.s will bcrccorcled
as well. one could therefore reclassify any por[ion  of the survey using alternative critc.ria better
sLlitcd to a particular scientific goal (e.g. star catalogs vs. galaxy  catalogs). ‘Jlc catalogs will also
accomnmdatc additional attribute entries, in the event other pixel-based mcasurcmcnts  arc dccmccl
ncccssary. An important feature of the survey malysis  systcm will bc to facilit:~te  such clctailed
interactions with the catalogs. “1’hc catalog gcncratcd by SKl~A”l’  will eventually contain about a
billion entries rcprcscnting  hundreds of millions of sky object. I_Jnlikc  the traditional notion of a
static printed catalog, wc view our cfforl as targeting the cicvelopmcnt  of a new .gcncration of
scientific analysis tools that render it possible to have a constantly evolving anti growing catalog.
Without the availability of these tools for the first survey (POSS-1) conducted over 4 decades ago,
only a small pcrccntagc of the data was used and only specific arms of intercsl were studied. III
contrast, wc arc targc(ing  a comprchcnsivc sky catalog  that wil] be available on-]inc  for the LISe of
the scientific community.

As part of oLlr plans for the futLlrc  we plan to begin investigation of the :qq)licabi]ity  of unsu-
pervised learning (c]ustcring)  tcchniqLlcs  such as AU’IXX3 .ASS [01cc88] to the problcm  of discov-
ering cl Llstcrs or groupings of interesting objects. 7’}Ic i n i t ia l  goa l s  will be to a n s w e r  t h e  f o l l o w i n g

two qllcstions:
1. Arc the classes of sky objects used cLlrrcntly  by :Istronomcrs  justified by the datn: do they

natLmlly arise in the dat:i?
2. Arc there other classes of objects thnt astronomers were not aw:irc  of because of the clifficulfy

of dcding  with high dimensional spaces defined by the vwious  attributes’? I{ssentially  this is a
discovery problem.

‘1’hc longer term goal is to cvalu:ltc  the utility of unsupervised learning techniques m an aid for
the types of analyses astronomers conduct after objects have been classified into known classes.
Typically, astronomers cxminc the various distributions of different types of objects to tcs( existing
models of the formation of large-scale structure. in the universe. Armed with prior knowledge about
prol~crtics  of interesting c]ustcrs of,sky objects, ac]ustcring systcm can search through cat:ilog
cntrlcs  and point oLlt potentially ll]tCrCStl  I1’g Olljcct  clusters to astronomers. ‘1’his  wi]l help
astronomers catch imporhmt  patterns in the data that may otherwise go unnoticed duc to the sheer
siz,c of the data volumes.
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